
Use Special products  

$$(A+B)^{2} = A^{2} + 2AB+B^{2}$$
,  $(A-B)^{2} = A^{2} - 2AB+B^{2}$ ,  
and  $(A+B)(A-B) = A^{2} - B^{2}$  to find  
(1)  $(2x^{3} + 5)^{2}$ 
 $(3)(x^{4} + x^{2})(x^{4} - x^{2})$   
 $= (2x^{3})^{2} + 2(2x^{3})(5) + (5)^{2}$ 
 $= (x^{4})^{2} - (x^{2})^{2}$   
 $= (x^{4})^{2} - (x^{2})^{2}$ 
 $(3x^{2} - 4y^{3})^{2}$ 
 $= (x^{8} - x^{4})^{2}$ 
 $= (3x^{2})^{2} - 2(3x^{2})(4y^{3}) + (4y^{3})^{2}$ 
 $= (9x^{4} - 24x^{2}y^{3} + 16y^{6})^{2}$ 









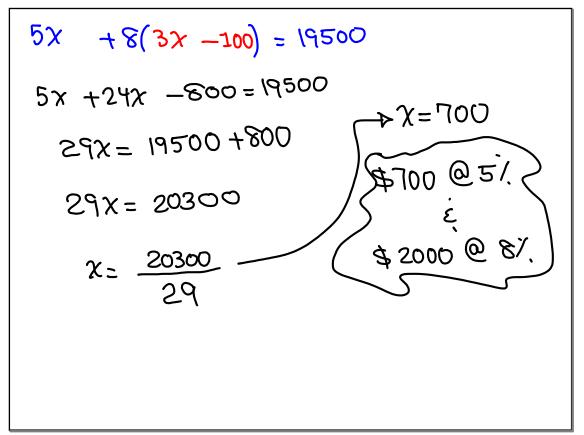
Multiply  

$$(x +3)(x-3)(x^{2}+9) = (x^{2})^{2} - 9^{2} = x^{4} - 81$$

$$(2x - 1)(2x + 1)(4x^{2} + 1) = (4x^{2})^{2} - (1)^{2}$$

$$= (4x^{2} - 1)(4x^{2} + 1) = (4x^{2})^{2} - (1)^{2}$$

$$= 16x^{4} - 1$$


Find the length  

$$A = 27x^{3}-8$$
  
 $3x-2$   
 $3x-2$   
 $3x-2$   
 $-(27x^{3} - 18x^{2})$   
 $(8x^{2} + 6x - 8)$   
 $-(18x^{2} - 12x - 8)$   
 $(27x^{-8})$   
 $(12x - 8)$   
 $(12x$ 

January 25, 2017

we need 40 Liters of 22% alcohol Soln. we have unlimited supply of 15% & 25% alcohol Solns. Use system of linear equisto find how 5x +y=40 many liters of each?  $\frac{157}{157} + \frac{257}{157} = \frac{227}{100} \frac{15}{100} \times + \frac{25}{100} \frac{222}{100} \cdot 40$   $\frac{157}{100} \times + \frac{25}{100} \frac{222}{100} \cdot 40$   $\frac{57}{100} \times + \frac{3}{100} = \frac{40}{100} \cdot 5 \frac{157}{150} \times + \frac{3}{25} \frac{12}{5} \frac$ J28L of 25%, J 12L of 15% - 2y=56

\$195 in total simple interest in I Kr. Two accounts, one pays 5%, another one pays 8%. The money in 81 account was \$100 less thay 3 times the money in 5% account. Use System of linear equisite find how much per account. Total interest = 195  $+ \frac{8}{3} \frac{100}{100} \times + \frac{8}{100} = 195$ 51.  $y = 3\chi - 100$ 5x + 8y = 19500y = 3x - 1000



Factor out the GLCF:  
1) 
$$3x + 15$$
  
 $=3(x + 5)$   
3)  $20x^{3} - 30x^{2} - 10x$   
 $=10x(2x^{2} - 3x - 1)$   
(2x - 3)  $20x^{3} - 30x^{2} - 10x$   
 $= (2x - 3)(7x - 5)$ 

Factor by grouping  
(1) 
$$\chi^{3} + 2\chi^{2} + 4\chi + 8$$
  
 $= \chi^{2}(\chi + 2) + 4(\chi + 2) = (\chi + 2)(\chi^{2} + 4)$   
(2)  $5\chi^{3} - 3\chi^{2} - 25\chi + 15$   
 $= \chi^{2}(5\chi - 3) - 5(5\chi - 3)$   
 $= (5\chi - 3)(\chi^{2} - 5)$ 

Factor completely  
(1) 
$$\chi^{2}$$
 (+1 $\chi$ ) + 12 =  $\chi^{2}$  + 3 $\chi$  + 4 $\chi$  + 12  
P=12  
1,12  $\chi(\chi+3)$  + 4( $\chi+3$ )  
S=7 12 2,6 =  $(\chi+3)(\chi+4)$   
(2)  $\chi^{2}$  (+ $\chi$ ) - 12 =  $\chi^{2}$  - 3 $\chi$  + 4 $\chi$  - 12  
P=-12 -1, 12 =  $\chi(\chi-3)$  + 4( $\chi-3$ )  
S=1 -12 -2,6 =  $(\chi-3)(\chi+4)$ 

## January 25, 2017

3  $2\chi^2 + 7\chi + 5 = 2\chi^2 + 2\chi + 5\chi + 5$  $\frac{1,10}{2,5} = 2\chi(\chi+1) + 5(\chi+1)$ P=10 S=7  $=((\chi+1)(2\chi+5))$ 10 (4)  $2\chi^{2} - 3\chi - 5 = 2\chi^{2} - 5\chi + 2\chi - 5$ P=-10 S=-3 -10 (2,-5) =  $\chi(2\chi - 5) + 1(2\chi - 5)$   $= \chi(2\chi - 5) + 1(2\chi - 5)$   $= \chi(2\chi - 5)(\chi + 1)$ 

(5) 
$$\chi^{2} - 13\chi + 36 = \chi^{2} - 4\chi - 9\chi + 36$$
  
P=36  
S= -13 36  $-1/36$   
 $-1/36 = \chi(\chi-4) - 9(\chi-4)$   
 $-3/12 = [(\chi-4)(\chi-9)]$   
(6)  $\chi^{2} - 12\chi + 36 = \chi^{2} - 6\chi - 6\chi + 36$   
P=36  $\chi = \chi(\chi-6) - 6(\chi-6)$   
 $S = -12$  36  $= \chi(\chi-6)(\chi-6)$   
 $= (\chi-6)(\chi-6)$   
 $= (\chi-6)^{2}$ 

Special Sactoring  

$$A^{2} \rightarrow B^{2} \rightarrow Prime$$
,  $A^{2}-B^{2}=(A+B)(A-B)$   
(1)  $\chi^{2}+49$   
 $=\chi^{2}+\eta^{2} \rightarrow Prime$   
 $=(5\chi)^{2}-(8)^{2}$   
 $=(5\chi+8)(5\chi-8)$   
(2)  $\chi^{2}-100$   
 $=\chi^{2}-10^{2}$   
 $=(6\chi)^{2}-(7\chi)^{2}$   
 $=(6\chi+7\chi)(6\chi-7\chi)$ 

Suctor completely  
(1) 
$$16\chi^{2}(5\chi - 3) - 25(5\chi - 3)$$
  
 $=(5\chi - 3)(16\chi^{2} - 25) = (5\chi - 3)(4\chi + 5)(4\chi - 5)$   
 $(4\chi)^{2} - (5)^{2}$   
(2)  $\chi^{2}(7\chi + 1) - 6\chi(7\chi + 1) - 16(7\chi + 1)$   
 $=(7\chi + 1)(\chi^{2} - 6\chi - 16)$  1,16  
 $=(7\chi + 1)(\chi - 8)(\chi + 2)$   
 $=(7\chi + 1)(\chi - 8)(\chi + 2)$ 

January 25, 2017

Use 
$$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$$
  
 $A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$   
Factor  
 $0 + \chi^{3} + 27 = \chi^{3} + 3^{3} = (\chi + 3)(\chi^{2} - 3\chi + 9)$   
(2)  $8\chi^{3} - 125 = (2\chi)^{3} - 5^{3}$   
 $= (2\chi - 5)(4\chi^{2} + 10\chi + 25)$ 

Factor  

$$27\chi^{3}(3\chi - 10) - 1000(3\chi - 10)$$

$$= (3\chi - 10)(27\chi^{3} - 1000)$$

$$= (3\chi - 10)(27\chi^{3} - 100)$$

$$= (3\chi - 10)(3\chi - 10)(3\chi - 100)$$

$$= (3\chi - 10)(3\chi - 10)(3\chi - 100)$$

$$64 \chi^{3} \left( \frac{64 \chi^{2} - 25}{64 \chi^{2} - 25} \right) + 125 \left( \frac{64 \chi^{2} - 25}{64 \chi^{2} - 25} \right)$$
$$= \left( \frac{64 \chi^{2} - 25}{8 \chi^{2} - 5^{2}} \right) \left( \frac{64 \chi^{3} + 125}{4 \chi^{3} + 5^{3}} \right)$$
$$= \left( \frac{8 \chi - 5}{8 \chi - 5} \right) \left( \frac{8 \chi + 5}{4 \chi + 5} \right) \left( \frac{16 \chi^{2} - 20 \chi + 25}{4 \chi + 5} \right)$$

Since 
$$0 \cdot \# = 0$$
  
 $0(2x-3) = 0$ ,  $(3x+5) \cdot 0 = 0$   
Solve  $(3x+5)(2x-3) = 0$   
 $3x+5=0$  or  $2x-3=0$   
 $3x = -5$   
 $x =$ 

Zero-Product Rule or Zero-Sactor Thrm.  
IS 
$$A \cdot B = 0$$
, then  $A = 0$  or  $B = 0$   
(Maybe both)  
Solve  
 $(\chi - 7)(\chi + 10) = 0$   
 $\chi - 7 = 0$  or  $\chi + 10 = 0$   
 $\chi - 7 = 0$  or  $\chi + 10 = 0$   
 $\chi = -10$   $\{-10, 7\}$ 

Solve Polynomial eqn:  
1) RHS = 0  
2) LHS must be factored  
3) Use Z.F.T., and Solve  
each factor.  

$$\{-2,5\}$$
  $(x=5)$   $(x=2)$   
Solve  
 $\chi^2 - 10 = 3\chi$   
 $\chi^2 - 3\chi = 0$   
 $\chi^2 - 3\chi =$ 

Solve  

$$(\chi + 4)(\chi - 2) = -5$$
  
1) Soil & Simplify  
 $\chi^{2} - 2\chi + 4\chi - 8 + 5 = 0$   
 $\chi^{2} + 2\chi - 3 = 0$   
2) Sactor LHS  
 $(\chi + 3)(\chi - 1) = 0$   
3) USE Z.F.T.  $\chi + 3 = 0$  or  $\chi - 1 = 0$   
 $\chi = 1$   
 $\chi = 1$ 

The length of a rectangle is 2 ft longer  
than its width. Area is 24 ft<sup>2</sup>.  
Sind its dimensions.  

$$A = 24$$
 (4) to get  $x + 2$   
 $LW = 24$   $x + 2$   
 $\chi(x+2) = 24$   $\chi(x+6)(\chi-4) = 0$   
by  $Z \cdot F \cdot T$ .  
 $\chi^2 + 2\chi - 24 = 0$   $\chi = 6$   $\chi = 4$ 

Solve  

$$3\chi^2 - 4 = \chi$$
  
(DRHS=0  $3\chi^2 - 4 - \chi = 0$   
(2) LHS must be =>  $3\chi^2 - \chi - 4 = 0$   
factored =>  $3\chi^2 - \chi - 4 = 0$   
 $4\pi$   
 $(3\chi - 4)(\chi + 1) = 0$   
by Z.F.T.  
 $3\chi - 4 = 0$   $\chi + 1 = 0$   
 $\chi = 4/3$   $\chi = -1$ 

Find 
$$\chi$$
:  
(i) Right Triangle  
 $\chi = \frac{5}{2}$  (2) Use Pythagorean Thum  
 $\chi^{2} + b^{2} = c^{2}$   
 $\chi^{2} + (x + 1)^{2} = 5^{2}$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
 $\chi^{2} + \chi^{2} + 2x + 1 = 25$  (A+B)  
(X+Y) (X-3) = 0

Area of a rectangle is 
$$21 m^2$$
.  
length is  $1 m$  longer than twice its  
width. find its dimensions  
 $A = 21$   $3m$  by  $1m$   
 $m$   
 $L = 2x + 1$   $(2x+1) \cdot x = 21$   
 $2x^2 + x - 21 = 0$   
 $(2x + 1)(x - 3) = 0$   
by  $z \cdot F \cdot T$ .  
 $2x + 7 = 0 = r x - 3 = 0$